August 2012 Backesiasias Solution Based on Cx-3 ATC/FPT software ## **Month 2: Retro-Cx HW Tertiary Pumping TAB** | Measurement | Criteria | On-Maximum Cooling | | Remarks | |--|---------------------------------|-----------------------------|-----------------------------|--| | Point | | Design | Actual | | | 1
At Inlet Building Heat Pump P-1 | Flow
Pressure
Temperature | 200 GPM
20 Feet
190°F | 200 GPM
20 Feet
190°F | A. OK per design B. Pressure Reading is Adequate. No Action Needed. C. Pressure Reading is Excessive. Issue Unscheduled Work Order & Consider Hydraulic Model Study. | | 2 At Building Heat Pump P-1 Discharge | Flow
Pressure
Temperature | 200 GPM
80 Feet
190°F | 200 GPM
80 Feet
190°F | A. OK per design B. Pressure Reading is Adequate. No Action Needed. C. Pressure reading is excessive. Consider hydraulic model study. | | 3
At Balancing Valve Outlet | Flow
Pressure
Temperature | 200 GPM
75 Feet
190°F | 200 GPM
75 Feet
190°F | A. OK per design B. Pressure drop through balancing valve is adequate. No action needed. C. Pressure drop is excessive. Review why valve needs to be 65% closed. | | 4
At Boiler B-1 Inlet | Flow
Pressure
Temperature | 210 GPM
20 Feet
170°F | 240 GPM
35 Feet
170°F | A. OK per design B. GPM and pressure reading are excessive. Consider hydraulic model study. C. Temperature is adequate. | | 5
At Boiler B-1 Outlet | Flow
Pressure
Temperature | 210 GPM
20 Feet
190°F | 240 GPM
20 Feet
190°F | A. OK per design B. Balancing of DHW and building heat GPM is inadequate. Review design. C. GPM and pressure reading are excessive. Consider hydraulic model study. | | 6
At Domestic Hot Water Pump
P-2 Inlet | Flow
Pressure
Temperature | 10 GPM
20 Feet
190°F | 10 GPM
20 Feet
190°F | A. OK per design B. Pressure drop is excessive. C. Temperature is excessive. | | 7 At Domestic Hot Water Pump P-2 Outlet | Flow
Pressure
Temperature | 10 GPM
80 Feet
190°F | 10 GPM
80 Feet
190°F | A. OK per design B. Pressure reading is adequate. No action needed. C. Pressure reading is excessive. Consider hydraulic model study. | | 8
At DHW Storage Tank HWR Outlet | Flow
Pressure
Temperature | 10 GPM
70 Feet
170°F | 40 GPM
40 Feet
170°F | A. OK per design B. Pressure reading is adequate. No action needed. C. GPM and pressure reading are excessive. Consider hydraulic model study. | | 9
At DHW Storage Tank Supply
Outlet | Flow
Pressure
Temperature | 10 GPM
98 Feet
140°F | 10 GPM
98 Feet
140°F | A. OK per design B. Pressure reading is adequate. No action neede C. Pressure reading is excessive. Consider hydraulic model study. | | 10
At DHW Storage Tank Inlet | Flow
Pressure
Temperature | 10 GPM
100 Feet
50°F | 10 GPM
100 Feet
50°F | A. OK per design B. Pressure reading is adequate. No action needed. C. Pressure reading is excessive. Consider hydraulic model study. |