

Application:

- Retail Facilities, Chapter 2
- ☑ Commercial & Public Buildings, Chapter 3
- ☐ Educational Facilities, Chapter 8
- ☑ Industrial Air Conditioning, Chapter 15
- ☐ Laboratories, Chapter 17
- ☐ Power Plants, Chapter 28

Project Type:

- ✓ New Construction
- Renovation
- ☐ Infrastructure (central heating, cooling, and/or cogeneration)
- ☐ Facility Audit and Capital Project Master Planning

References:

- ☑ 2016 ASHRAE Handbook HVAC Systems and Equipment
- 2017 ASHRAE Handbook Fundamentals
- 2018 ASHRAE Handbook Refrigeration
- ✓ 2019 ASHRAE Handbook HVAC Applications

Other References:

- ☐ Cooling Technology Institute (cooling towers)
- ☐ ACGIH Industrial Ventilation: A Manual of Recommended Practice for Design, 28th Edition
- ☑ ASHRAE Standard 202 (Commissioning Process for Buildings and Systems)
- ✓ ASHRAE Guideline 0 (Commissioning Process)
- $\ \square$ International District Energy Association (IDEA) and applicable IDEA documents

DESIGN INTENT DOCUMENT

HVAC Design Intent: The HVAC system selection and design intent is based on the processed outlined in ASHRAE Handbook 2016, Chapter 1, HVAC System Analysis and Selection, and includes the following:

Owner building program goals and additional goals

- \square Finalized system selection shall be decentralized HVAC systems and terminal
- ☐ Specialized systems shall include general exhaust, kitchen exhaust, and smoke exhaust
- ☑ Budget goals: first cost, operating cost, and/or life cycle cost
- ☐ Timeline goals: occupancy due date and pre-purchased equipment date
- ☑ Utility availabilities: natural gas, emergency power, hot water heating, and a BAS system.

DESIGN CRITERIA DOCUMENT

- ☑ The HVAC design criteria shall be in sync with the project delivery method and owner's building program requirements as noted above.
- ☐ The design criteria shall be based on ASHRAE 60.2 and federal energy code compliance for outdoor air temperature compliance.
- ☑ The utility shall be natural gas to serve the new central boiler plant that shall serve three firetube hot water boilers. The size shall be 2-800 boiler horsepower (BHP) units each sized at two-thirds capacity and 1-200 BHP intended to be a standby for these two boilers plus to operate during the air conditioning season.
- $\ensuremath{\square}$ The new automatic controls shall be interfaced with the existing BAS system.
- ☐ The new central plant hot water system shall be primary pump with secondary pumps serving the boilers and heat exchangers.
- ☐ The pipe distribution shall be standard underground
- distribution to new tertiary pumps with VFDs within each building.
- ☐ A central air system within the boiler plant shall provide heating in the winter to maintain 65°F and 75°F in the air conditioning season.
- ☐ The HVAC design engineer shall provide system flow diagrams at the design development phase.
- ☑ HVAC design engineer shall include an electrical data sheet to coordinate with the electrical design engineer, a plumbing data sheet to coordinate with the plumbing design engineer, and equipment and distribution weights to coordinate with the structural design engineer at the conceptual/schematic phase.