

MONTH 1 - THE ENERGY CONSERVATION OPPORTUNITY:

Hot Water Heating System with Domestic Hot Water Heating Building **Applications**

BASIS OF DESIGN - (B-Of-D) - 1986

Original Design Intent - Central hot water plant serving 50,000-sq-ft health club building

Boiler	Capacity	Months Online/Hrs of Operation		Building Pump	Domestic HW Pump		Remarks	
Cast Iron 2,	,000 MBtuh	4ear round / 24 hrs/day			Constant flow	Constant flow		On demand
Building I	Pump	GPM	Pump Head	Balar	ncing Valve Setting	Motor	VFD	Remarks
Two-pipe syst	tem 2	200	60 ft	35% clc	55Ed	Original	По	Inlin€ pump
Two-pipe syst	:∈m 1	0	60 ft	Попе		Original	По	Inline pump

ATC Controls	Flow Control Boiler/HW	Temperature Control	Zone Control	Domestic HW Control
Electric	Three-way valve	On at 170° and off at 190°	Space thermostat	On at 125° and off at 140°

Building Heating Hot Water Temperatures	Domestic Hot Water Temperatures	Remarks
190° to 170° HW5	110° to fixtures	Three-way domestic HW blending valve

ENERGY RETROCOMMISSIONING

REPORT/RECOMMENDATION/IMPLEMENTATION OPPORTUNITIES:

ECM1: Excessive primary P-1, and domestic hot water pump P-2 pump head, can be enhanced with replacing the pump with a correct sized primary pump and removal of building's heat three-way blending valve. ECM2: Replace antiquated boiler, B-1, with high-performance condensing boiler. ECM3: High hot water supply temperature is a fixed setpoint with a 20° hot water supply-to-return temperature (190° to 170°) that can be reprogrammed to operate off outdoor air temperature reset down to a minimum hot water supply temperature for domestic hot water. In addition, include removal of three-way valves with two-way ATC valves. ECM4: System operates 24/7/365 and can be programmed to operate based on time of year and addition of domestic hot water system solar tank capacity sized for 100% solar heated domestic hot water during the summer season.

New BofD - Building hot water heating system will operate on calendar program start-up and compensated hot water system temperature in place of constant flow compensated temperature design intent. Domestic hot water system shall receive solar heated domestic water enhancement with 100% solar heat during the summer months. Building water system will be rebalanced. DDC shall be added to replace the antiquated electrical controls.

NEW 2012 B-Of-D

NEW 2012 B-01-B									
Boiler	Capacity Months Online/		Hrs of Operation Building P		ump Domestic HW Pump		Remarks		
Condensing	2,000	MBtuh	September to Me	y / 24 hrs/day Constant fl		ow Constant flow			
Building F	Pump	GPM	I Pump Head	Balancing Va	lve Setting		Motor	VFD	Remarks
Two-pipe sys	stem	100	25 ft	100% орЕп	High-Efficiency		fficiency	По	Inline pump
Domestic H	lW Pum	ıp GP	PM Pump Head	Motor	Solar Panel System Addition				
Two-pipe sys	stem .	10	18 ft	High-efficiency	Web-based system sized-panels/heat exchanger/pump/ATC			nger/pump/ATC	
ATC Controls				Roiler/HW Te	mnerature C	ontrol		Domestic HV	W Control

ATC Controls	Boiler/HW Temperature Control	Domestic HW Control
DDC	120° to 190°, based on 0A temperature	115° to fixtures

OTHER ENERGY CONSERVATION OPPORTUNITIES

ECM-5: Consider completing an entire hydraulic model assessment to select the optimum pump/circulators. ECM-6: Consider independent domestic hot water solar heat to remove heating load and downsize new condensing boiler. ECM-7: Consider a utility dashboard (see November 2010 "Tomorrow's Environment" column) mounted in building lobby to raise awareness to energy conservation, as well as other energy and environmental initiatives.